ROOFTOP RIVALS

RAPPORT DE PREMIERE SOUTENANCE - SAE J3D

SALVAN ACHILLE - BENNJAKHOUKH RAYAN — CLEMENT
GREGORY-LUCAS — HADJAB MEHDI — PUIJALON MILAN

JANUARY 2026 / EPITA PARIS

SUMMARY

Table of Contents

SUMMARY ittt e e st e e e a et e e e e s te e e e e e sttt e e e anae e e e e e n et e e e e enteeeeeanaeeeeannneeeeeennees 2
INTRODUGCTION ... ettt e e e e e e e e et e e e ene e e e e e ansaeeeeennneeeeeeansneeeeannneeens 3
ORGANIZATION & METHODOLOGYoiiiiiiiiiiee et eeeiieee e sie e e a e e sneee e e s snaeeeeannseeeesennees 5
INDIVIDUALS CONTRIBUTIONSottt sttt e e e e e nnee e e e anneee s 7
Rayan BENNJAKHOUKH — Group LeAdEercc.uuuiiiiiiiiiiiiee et 7

L@ o] [=Tor 1)Y= F O EPP PP PPR 7
Project Organization and Management.............cooiiiii e 7
MeNU DEeVEIOPMENT e e e e eeaeeas 9
Common Tasks and Documentationcocueiiiiiiieeiiee e 14

L@ o U< 1o o TSRS 15
Achille SALVAN — TeChniCal Leadccuueueiiiuiieeieiee ettt 16
L@ o) =T o3 (1Y TSR 16

L0 g Lo o7 o1 N 2 SRR 16
03 Y7=T 0 0= o) 17
YT o] F= 7= SRS 19
VDSt . —————— 21

L@ T U= 1o o SRS 22
Mehdi HADJAB — Game Managercoou ittt 23
] (e o 18 o (o o O 23
The SUPER POWETS ..ottt ettt e e e e e e e et e e e e e e e e e s annnsaaeeeaaaeeaaanns 23
General Game MECNANICSciiiiiiiiiee et e e e e e e e e e 25
Milan PUIJALON — CreativVe Dir€CLOKcccccueieeieee ettt e e e eea e 27

L@ o] [=Tor 1)Y= TSP PRR 27

e F= T o o1 T 27

Pl Og eSS . i 28
Gregory-Lucas CLEMENT — Team Coordinator...............ccccciueeeiieeieeeciiiieeeee e eeeiveeeee e 32
CONCLUSION. ...ttt e e e e e e e e ettt e e e e s s st e e e e nsaeeeeanseeeeeaansaeeeeannnseaeeannsenaeanns 33

BIBLIOGRAPHY ... e 33

INTRODUCTION

In our first year at EPITA, we have to develop a videogame with
Python. After a few group meetings, we decided to create a 3D
videogame with a future theme. In our videogame, there is a chase game
with two persons. One has to catch the other one, but at the same time,
this other has to escape from him, when a player is caught, the turn
changes and he has to be chased. The player who stays hunted the
most time at the end of a round wins. In a game, three rounds are
played. Each round lasts five minutes. After we have decided what
videogame we would develop, naturally we asked ourselves: "But how to
develop all this with Python?"

In a few researches on the web, we decided to develop our
videogame with Panda3D, since we believed that with Panda3D, we
would have an easier task to code a 3D videogame compared to using
other tools like Pygame. With Panda3D, we know that we have a library
more suited to our needs.. For the 3D models, we decided to utilize the
program Blender because it is free software that is very efficient in
creating game resources. Of course, we utilized Github to collaborate
and monitor our progress, which helped us ensure there are no conflicts
when working on different parts by multiple individuals.

During the first search phase we decided of the videogame
concept, the project that we wanted to make and the general
atmosphere. After this before beginning the project we gave to each of
us a role in the realization of this project based on everyone's skills and
interests. Milan was the one that was in charge of the music
(soundboard) and the 3D modeling, Rayan was in charge of the creation
of the website and the menus, Achille was in charge of the multiplayer
system and the movements controls and finally Mehdi was in charge of
the GameMode logic, the HUD display and the Al for single player mode.
This was the initial repartition for everyone in this project. After this initial
planning, every member started to do some researches to learn how to
accomplish their work properly. We watched tutorials, read
documentation and did some small tests to understand how Panda3D
works.

In the early of December everyone has started their part but a little
reorganization have been made because Gregory-Lucas have been
added to our group, thus Rayan gave the Website to do for Gregory-
Lucas even if he already started it because it seemed to be the best
decision for everyone and Gregory-Lucas had some experience with web
development. Thus Rayan has been also in charge of the 3D with Milan
and of the presentation of Methodology for the final report. At this point
Achille, Mehdi and Milan already started development and Rayan and
Gregory-Lucas were starting their respective parts to catch up with the
others.

ORGANIZATION & METHODOLOGY

To work well together we use different tools. First to code our
project we use Panda3dD, it is the most efficient programming
environment for our type of project in Python in 3D, it permits us to code
our videogame so this is the main tool that we are using for the
development. Additionally we also use a lot the app Discord because this
app permits us to communicate about this project efficiently, we can
share our screen if we want to show something to the others and it is a
social media adapted to computers thus when we work on our computers
on the project it is very useful. We have a dedicated server for our project
where we can discuss about bugs, share ideas and plan our work
sessions. For the artistic side of our project, for the realization of the map
and the 3D models we use the software Blender, when we searched for
a software for 3D it is the software that seemed the more adapted to our
project because it has all the features we need and it's free. Even if we
can communicate while coding and share our screen it is important to
have a common repository for the group so our codes are in a same
place and we don't lose any work. This is why we use also Github
because by pushing our work on it it allows us to see the work of the
others, maybe give some advices or ask for clarifications to understand
the code of others. This permits us to keep tracking of the work of the
others and to understand how the project is going, we can also see who
did what and when. Finally we use also Youtube because it is a great
place to learn some knowledge on something that we have to create, for
example it is on Youtube that we understood how to use Blender and
also how to implement some features in Panda3D like collision detection
or camera controls. There are many tutorials that helped us a lot during
the development.

In our group we all have different roles so we can make sure that
we are all keeping going in the same direction and that the project stays
organized. For example Rayan is the project leader, to make sure that
everyone is following the plan every week we do a little meeting to make
sure that everyone is good and so if someone is not good or is blocked
on something, someone can help him on a task. During these meetings
we also discuss about what we accomplished during the week and what
we plan to do for the next week. This helps us to stay motivated and to
see the progress we are making on the project.

The Methodology classes are also helping us to work on our
project. Sometimes it is very hard to find time to keep going on the
project and to be motivated but the methods like the "time boxing" or the
"Pomodoro" are very useful because it helps us getting organized and
managing our time better. For example with the Pomodoro technique we
work for 25 minutes without any distraction and then we take a 5 minutes
break, this way we stay focused and we don't get too tired. The time
boxing is also helpful because we can set a specific time for a specific
task and we know that we have to finish it in this time, so we don't spend
too much time on one thing. These methods really helped us to stay
productive and to not procrastinate on the project. Sometimes when we
are stuck on a problem it's also good to take a break and come back
later with a fresh mind, the Methodology classes taught us that and it's
really true. Thanks to these techniques we managed to keep a good
rhythm of work even when we had other projects or exams at the same
time.

INDIVIDUALS CONTRIBUTIONS

Rayan BENNJAKHOUKH - Group Leader

Objectives

Concerning my position as Group Leader, | have two main tasks.
On the one hand, | am responsible for the coordination of the group as
well as the management of the global progress of the project. On the
other hand, | have specific tasks related to the technologies | have to
learn, such as the development of the menus of the game and learning
about the use of the program “Blender” to assist in the map
development. Among my primary missions are the organization of the
weekly meetings, the management of the global planning, the attribution
of the tasks based on the abilities of each member of the group, and the
development of the interface with which the players will first interact with
the game.

Project Organization and Management
Setting Up Work Rituals

| soon realized that the basic requirement for this newly formed
group in October was to organize an efficient working system. Without it,
| realized that we might be wasting our time by working in our separate
corners. | decided it was a good initiative to organize a systematic
meeting between us every Friday after our classes. Why Friday, you
might ask? This is the only time when everyone is available in school,
and it will help us assess what has happened in the last week and
organize our activities for the coming weekend and the coming week.

These meetings turned out to be the backbone of our organization.
They are structured in a fixed way: we begin with a round table in which
every participant shares their progress since the last meeting, specifying
what was done, what'’s in progress, and, above all, what is creating
issues. This is a decisive point because we can quickly point out
technical or organization issues that could cause trouble. After that, we
all share solutions for the issues brought up. To finish, we distribute the
work for the next week, in a way that no one is overloaded and while
respecting the inter-dependencies between tasks.

Strategic Task Distribution

Among the key roles | had was delegating tasks to members of the
team. | remember dedicating a considerable amount of time speaking
one on one with everyone to know their areas of strength, where their
knowledge is, and what they wish to accomplish with this project.

In the case of Achilles, the skillset of advanced networking
expertise made him the most qualified to work on the multiplayer part of
the architecture. For Mehdi, the keen eye for game design made him the
most suitable for the creation of the mechanics and the power-ups for the
game. In the case of Milan, his artistic skills made him the most qualified
to become our next Creative Director, learning to use the software for the
cyberpunk style that we want for the visuals of our game.

Gregory-Lucas's situation is special in the sense that he joined the
group towards the end of November. As soon as he joined, he showed
interest in contributing to the group’s project website, which | had
personally started developing during the first weeks. | decided to wholly
entrust him with the website, contrary to my initial plans, which involved
continued work on it. This was a perfect way of involving Gregory-Luacs
in our group activities, considering the little time he had been part of the
group. Moreover, it gave me ample time to handle other aspects related
to our group's project.

Managing Unexpected Situations

The project has faced several big obstacles. First, there was the
addition of Gregory-Lucas as the fifth member at the end of November.
This required a quick reorganization of our work structure. After giving it
some thought, | decided to give him the website | was working on. This
decision had personal repercussions for me: | had been working for
several weeks on that site, and abandoning everything overnight wasn't
so easy psychologically. | needed a little time to get back into the project
with the same efficiency, especially since this period coincided with a
heavy academic workload.

The second impediment, and maybe the most important one, was
the unforeseen delay in the generation of the 3D map. Milan faced more
problems in Blender than we initially foreseen. The learning slope was
much higher than we expected in our initial planning process. This was a
constraint on our project schedule, since without the 3D content of the
map, other aspects of the game also couldn’t be developed in full detail.

With this critical block, | had an important choice to make: learn
Blender myself, as rapidly as possible, in order to support Milan and
unblock the situation. During several weeks in December and January,
evenings and weekends were dedicated to highly concentrated learning
of Blender. | followed tutorials, looking only for what | needed to do to
achieve functional assets-basic modeling, UV mapping, simple texturing,
and optimized export to Panda3D.

But | must be honest here: | did not have a chance to develop
finished assets so far. The truth is, | managed to learn the basics of
Blender only. | know how to operate in the interface, | have an idea about
the basics of the software, | know how to make simple shapes, and |
know how the pipeline is supposed to look, but | have not managed to
develop finished assets for the game and include them in the process.
The learning process took all the time | had to devote to this project,
given my other obligations and duties. My involvement in the creation of
the map would be more potential so far, which means | am ready to help
and contribute, but | have not had a chance to really contribute so far.

Menu Development
Learning and Technical Choices

After handing over the website to Gregory-Lucas, | decided to fully
concentrate on developing the game's menus. This transition
represented a complete change of technology and approach. Moving
from web development to GUI development in a 3D game engine like
Panda3D represented a real conceptual leap.

Although | already had some experience in Python programming,
having coded a few simple games when | was fifteen, using Panda3D to
create graphical interfaces was completely new territory for me. The
choice of Panda3D as our game engine was a collective decision. We
absolutely wanted to make a 3D game, and Panda3D offered the
advantage of being entirely usable in Python while offering robust 3D
capabilities.

However, going along with Panda3D meant | had to learn a whole
new environment. This not only meant | had to learn about the basics of
ShowBase, which is essentially the base class for anything using
Panda3D, but | had to learn about DirectGui, which is in charge of
handling everything related to the interface. | had to learn how | could
make buttons and interfaces that not only worked, but looked good in our
cyberpunk theme.

Learning Method

In December, | chose to fully engage with the code material. In
learning Panda3D, my strategy was multi-sourced learning involving
Panda3D tutorials on YouTube, learning from the official website
documentation, and turning to Stack Overflow when facing particular
problems. For me, learning involved moments of frustration. Compared
to web development where one could see results almost instantly,
learning Panda3D involved more hard work and perseverance for even
tiny milestones that were victories in themselves to sustain my drive to
learn.

Concrete Achievements and Technical Details

| developed two main menus for the game: the base menu that
appears when launching the game, and the in-game pause menu.

Understanding the Class System and Imports

Everything in Panda3D revolves around classes. | needed to import
necessary modules:

ShowBase handles the rendering window and game loop.
DirectGui gives access to GUI elements. TextNode controls text
alignment. Then | created my main class:

(ShowBase):
__ (self):
ShowBase. _init__ (self)
self.disableMouse()
self.setBackgroundColor(s , 1)
self.fontTitre = loader.loadFont

self.creerMenu()

The Base Menu

| created the base menu through the creerMenu method:

(self):
self.fondMenu = DirectFrame(
frameColor=(, , ,), # Dark semi-transparent
background
frameSize=(- , , ,)

self.titre = OnscreenText(
text ,
pos = (9,)s
scale ,
fg = (9, 1, 1, 1), # Cyan neon
shadow (1,0,1,), # Pink-magenta shadow
shadowOffset (s)
align = TextNode.ACenter,
font = self.fontTitre

self.btnJouer = DirectButton(

text

scale s

pos=(9, ©,)>

relief=DGG.FLAT,

frameColor=(,), # Dark green background
frameSize=(, , ,),

text_fg=(o, 1, , 1), # Neon green text

command self.afficherMenuleu

The command parameter calls afficherMenuJeu when clicked. | created
similar buttons for "SETTINGS" (cyan) and "EXIT" (pink-magenta).

RUN THE WORLD

Menu Navigation - Hide vs Destroy

When clicking "START GAME", | transition to a submenu:

(self):
self.fondMenu.hide() # Hide but keep in memory
self.titre.hide()
self.sousTitre.hide()
self.btnJouer.hide()
self.btnOptions.hide()
self.btnQuitter.hide()

self.creerMenuleu() # Create mode selection submenu

.hide() makes elements invisible but keeps them in memory. Then
creerMenudJeu() creates the mode selection submenu with "CREATE
SERVER" and "JOIN SERVER" buttons. The "BACK" button uses
.destroy():

(self):
self.fondMenulJeu.destroy() # Permanently delete to avoid memory Lleaks
self.titreMenuJeu.destroy()
self.btnCreerServeur.destroy()
self.btnRejoindreServeur.destroy()

self.btnRetourMenu.destroy()

self.fondMenu.show() # Show hidden elements
self.titre.show()

self.sousTitre.show()

self.btnJouer.show()

self.btnOptions.show()
self.btnQuitter.show()

.destroy() permanently deletes elements to avoid memory leaks. .show()
makes hidden elements visible again.

SELECT MODE

JOIN SERVER

The In-Game Pause Menu

For the pause menu, | followed the same principles but added a
"RESTART" button alongside "CONTINUE", "SETTINGS", and "EXIT".
The background is more transparent to show the frozen game behind. |
haven't implemented the settings functionality yet - that's planned for
next semester. The other buttons are fully functional.

PRUSE MENU

CONTINUE

SETTINGS

Key Moment

Creating this first functional menu was a important step for me. It
was the first time since the project started in October that | created
something really concrete. When | saw my menu appear for the first
time, with its neon colors, its buttons responding to clicks, | felt a
satisfaction. This moment was like a reward for all the efforts made, for
all the hours spent debugging errors. This first concrete success
remotivated me and confirmed that our cyberpunk vision was achievable
and starting to take shape.

Common Tasks and Documentation

As Group Leader, | naturally handle the majority of the project's
common deliverables. Being the one who coordinates everyone's work
and participates in everyone's technical discussions, I'm naturally the one
who has the most complete vision of the project.

Oral presentations are also my responsibility. For each review, |
create slideshows ensuring they tell a coherent story of our project. |
coordinate each member's speech to avoid repetitions and guarantee
that every important aspect is covered without the presentation being too
long or disorganized.

On the technical side, | also contribute to organizing our GitHub
repository. | help maintain a clear branch structure and participate in
resolving conflicts during merges.

Conclusion

The last semester has been a continuous learning process with
regard to technical tasks and organization tasks. It was understood that
the tasks and responsibilities of a Group Leader are much larger and
complex compared to organizing a meeting. You have to be able to
predict problems, improvise in case something unexpected occurs, and
keep your team motivated, while also making tough decisions in case of
conflicts between personal interests and the project’s interests.

The menus | developed now constitute the first impression players
will have of our game. I'm proud of the result: the menus work without
bugs, navigation is intuitive, and the neon-on-dark aesthetic immediately
creates the atmosphere we're aiming for.

As for the next semester, | will again take up my position as the
coordinator/developer. | will maintain the meetings, oversee the intensive
testing process, and complete the menus by incorporating the still-
pending functionalities, such as the audio settings menu and the end-of-
game screen. As has been my objective throughout, my target still
stands unchanged. | want to ensure that every member of my team has
conditions ideal enough for us to make our game as optimum as
possible.

Achille SALVAN — Technical Lead

Objectives

My Role: As the Technical Lead, | handle the tasks in the game
code involving complex mechanics. My main missions are implementing
player movements, which are complex in our game, and managing the
multiplayer system to allow players to play together. Additionally, having
experience in Web development, | took care of starting the website for
this first presentation.

Choice of P2P

At first, we hesitated between using a classic server for our game or
choosing P2P. Here are the arguments that made us choose Peer-to-
Peer, with a server used only to connect clients before the game starts.

- Latency

By connecting players directly, we remove a step that data has to go
through. In a classic network architecture, data goes from Client A to the
server, then to Client B. In Peer-to-Peer, as the name implies, data goes
directly from one client to the other without a server in the middle. This can
potentially cut the latency in half, which is significant in a competitive game.

- Server

Load By removing the server from the equation, we remove a huge burden
of calculation and bandwidth. A very simple server costing less than 5€ per
month could theoretically handle thousands of simultaneous games because,
once the games are launched, no more work is required from it. Usually, the
server acts as a communication point between players and must perform all
the calculations for the game logic, leaving the clients with only rendering and
input management.

- Flexibility

Thanks to Peer-to-Peer, we have great deployment flexibility. Since the
game does not need a connection to a remote server to run, this gives us the
possibility to implement a LAN mode very easily later on. This means that two
players connected to the same Wi-Fi could play together with almost zero
latency and without any dependence on the Internet.

Movements
Input Management
Instead of checking the keyboard state at every frame, we use an

event system included in Panda3D. It works via the "accept" method,
which allows us to bind an action to the pressing or releasing of a key.

def _init input(

.inputs = {
"forward": False, "back": False, "left": False, "right": False,
"up": False, "down": False,

.game.app.accept("z", ._set _input, ["forward", True])
.game.app.accept("z-up", ._set _input, ["forward", False])
.game.app.accept("n", ._toggle no clip)

def set input(, key: str, value: bool):
.inputs[key] = value

For keys that need to be held down, such as movement keys, we save
their state in a dictionary and update it when a key is pressed or
released.

Camera Management

For mouse movements, we first need to lock the mouse in the
center of the window. Once this is done, after every frame, the mouse is
reset to the center of the window. Therefore, to get the player's mouse
movement each frame, we simply look at the cursor's position relative to
the center of the window.
def _update_mouse_look():

pointer = .game.app.win.getPointer(9)
props = .game.app.win.getProperties()

center_x .game.app.win.getXSize() //
center_y = .game.app.win.getYSize() //
dx = pointer.getX() - center_x

dy = pointer.getY() - center_y
.game.app.win.movePointer (@, center_x, center_y)

.yaw -= dx * .mouse_sensitivity

.yaw = .yaw %

.pitch = max(- , min(5 .pitch - dy * .mouse_sensitivity))
.set_rotation(.yaw, .pitch)

To prevent the Yaw from accumulating if the player spins around, we use
modulo 360. This allows us to keep a Yaw value between 0 and 360
(excluded). We must also apply a constraint to the pitch to prevent the
camera from flipping over completely. Therefore, the pitch is kept
between -90 and 90.

View System

The game will be played in first-person, but for the development of
movements, | added the option to switch to third-person (camera behind
the player). This makes it easier to visualize the player's movements,
and later, it will allow us to code animations while watching them.

.game.app.camera.setPos(9, - .height * THIRD_PERSON_DISTANCE_RATIO,

.height * THIRD_PERSON_HEIGHT RATIO)
.game.app.camera.lookAt (.camera_eye)

Since the camera is attached to the player's head, 0 0 O represents
the player's eyes. We simply add an offset to the camera to move it back
and up. We also modify its rotation, so it looks at the player.

Movement Physics

For physics, we need to handle several situations, but they all
require an initial calculation of the player's movement vector. The desired
direction vector is obtained from the player's inputs (WASD/ZQSD). Its Z-
axis is equal to 0, and it is normalized, meaning it has a length of 1.
Once we have this vector, we multiply it by a constant to modify the
player's speed.

1. Ground Movements

We simply apply the vector to the player; no modifications need to be
applied to the vector.

2. Free Fall Movement

When the player is jumping, we cannot apply the movement vector
directly to the player, or it would look like they are gliding. Instead, we
add a value to the X velocity to make it approach the X value of the
desired direction vector. We do the same for the Y-axis. This makes air
movements slower without simply reducing speed, keeping the effect
natural.

3. "No-Clip" Mode

This is a development tool and will be removed from the final version.
It allows flying and passing through walls. To fly, we use the same logic
as the movement inputs but add the SPACE and SHIFT keys to move up
and down on the Z-axis. To disable collisions, we use removeCharacter,
which detaches the player node from the world, causing it to ignore the
world's collision boxes.

Multiplayer
A Hybrid Architecture

As mentioned above, we are not using pure Peer-to-Peer. This
would have a major downside: players would need to open ports on their
connection and share their public IP to connect. We chose a Signaling
server that is only useful for the connection phase. It registers the started
games and their associated codes. A guest can join a host using only this
code, which is much simpler. From that moment on, the real Peer-to-
Peer begins.

Connecting Players

Our goal here is to open a DataChannel. A DataChannel is a route
between two clients that allows them to exchange information without
going through a server. Establishing a connection between players is the
most technical part of Peer-to-Peer. It happens in several steps:

1. Creating the game

A player creates a game by sending a request to the server via a
WebSocket. A WebSocket allows the server to send information to clients
at any time without the client making a request. The server creates a
game, adds the host to the party, and sends back a 6-letter party-code.

2. A player joins a game

Once the game is created, a player can use this code to try to
connect. They send the code to the server. If a game is associated with
this code, the server adds the guest to the party and notifies the host that
a player has joined.

3. Sending the WebRTC Offer

The host creates an "Offer" and sends it to the server, which acts as a
transit point to send it to the second player via the WebSocket. The offer
contains information about the host and what they want to do (in this
case, create a DataChannel) and how they can communicate

4. Sending the WebRTC Answer

Once the guest receives the WebRTC offer, they send an answer
back to the host via the server. Their answer is stricter and defines how
they will communicate. For example, if the host said, "l can speak
French, English, and Spanish," and the client knows they can speak
English and Spanish, the client replies, "We will speak in English."

5. Exchanging ICE Candidates

After the host receives the client's answer, they send ICE candidates.
These are different addresses/paths to use for communication. Sending
multiple paths helps maintain the connection if one path becomes
inaccessible. The client then sends their own ICE candidates.

6. Creating the DataChannel

At this moment, both clients know how to communicate and, thanks to
the ICE candidates, how to find the other client. They can then create a
DataChannel. From now on, the two clients no longer depend on the
server to exchange data.

Packet Exchange

We have several ways to exchange data. The easiest option would be
for clients to exchange JSON. This format is similar to a dictionary, where
we can associate keywords with definitions (e.g., "x" to a value
corresponding to the player's X position).

However, this format is very heavy, so we chose binary packets. Each
message has a different format, but the first byte of every packet
corresponds to the message type. This lets us know what is inside the
packet and how to decode it. For example, a packet containing a player's
position has the format B5f. This means:

- 1 byte for the message type (always present).
- 5 floats: in this case, X, Y, Z, then Yaw and Pitch.

This economy might seem minimal, but for a player's position, a JSON
file would be 80-100 bytes, whereas the packet is only 21 bytes. And that
is for the heaviest packet! For unique events, the packet would only be 1
byte (just the message type to say the event occurred).

Movement Synchronization

Before continuing, note that | divided the player code into 3
classes: the Player class, and two classes inheriting from it: Controller
and NetworkPlayer. They all play a different role:

- Controller: This is where all movements and player inputs are
managed.

- NetworkPlayer: This represents the networked player. It contains
the logic to move the player avatar not controlled by the local user.

- Player: This is where the common logic between the two classes
resides, such as rendering the player in the world.

20 times per second, we update the other player on the game state
(e.g., the player's position). So, each player receives the other player's
position 20 times per second and simply moves the avatar to
synchronize movements.

However, if we do nothing else, the movements look choppy. If the
game runs at 60 frames per second, the player will see the other player
stay still for 3 frames, then teleport, then stay still again, etc. To fix this,
we add interpolation. Every frame, we calculate an intermediate position
between the last received position and the avatar's current position. It is
like drawing lines to connect dots.

Website

Choice of Technologies

The first step was choosing how to build our site. In 2026, we had
many choices. At first, | hesitated between React and Astro. However,
after thinking about it, since our site has no backend and is simply a
showcase site, adding such a Framework would have weighed down the
site unnecessarily. They are good tools, but in this context, they were not
relevant. Therefore, | decided to go with the classic choice: HTML, CSS,
JS.

Site Content

For the theme, we decided on a dark atmosphere with a flashy
accent color to recall the neon lights of cyberpunk cities. We went with a
one-page design (everything on the same page with scrolling); it is
modern and fits the game's aesthetic. For the download page, we
decided to make a single one where the user can choose what to
download. It will be possible to download the files for all presentations
and the game, centralizing all downloads in one place.

Conclusion

During this first semester, | laid the foundations for movement, on
which all future mechanics will rely. But above all, | built a functional
multiplayer system where we can easily add events and message types.
Today, if we want to add an action to synchronize, we simply assign it an
unused number between 0 and 15, and then handle the packet creation
and reading.

In a multiplayer game, it is essential to have functional multiplayer
early on because many mechanics rely on it. This avoids having to
recode them later, which justifies my choice to focus on developing the
multiplayer system rather than advancing the player's movements.

Mehdi HADJAB — Game Manager

Introduction

As part of our video game project, we aimed to design a gaming
experience that is dynamic, accessible, and strategic. The main objective
was to offer gameplay that is easy to understand while remaining rich
enough to keep players engaged over time. To achieve this, we worked
on game mechanics, code structure, and the addition of original features.

Rooftop Rivals is inspired by a tag-like game concept: one player
takes on the role of the mouse, while the other plays the hunter. The core
of the game is based on time management, movement, and interactions
between entities. To enrich this foundation, we decided to implement a
system of temporary powers called SUPER Powers, which add an extra
layer of strategy.

This report presents the technical and conceptual choices made,
as well as the different stages of the project’s implementation.

The SUPER Powers

The SUPER Powers were designed to make matches more
dynamic and to avoid repetitive gameplay. The idea was to randomly
spawn special entities on the game map. When a player comes into
contact with one of these entities, they receive a temporary power that
alters their abilities.

These powers serve several purposes:

- Introducing variety into matches
- Rewarding risk-taking and map exploration
- Creating unpredictable game-changing situations

Among the powers envisioned, the first one implemented was SUPER
Speed, which allows a player to increase their movement speed for a
short period of time.

Technical Implementation

To implement this system, | first researched how classes work in
Python. | consulted various tutorials and resources to understand how to
structure the code in a clean and scalable way.

After several attempts and corrections, | was able to design a clear
class architecture, making it easier to manipulate game entities. Each
SUPER Power is represented by a specific class inheriting from a
generic power class.

Since the game physics are defined using several variables
(speed, acceleration, position, etc.), the implementation of SUPER
Speed involved temporarily modifying the SPEED variable. Concretely,
the value of this variable is multiplied by a coefficient (for example, x1.5)
for the duration of the power.

SPEED = 188

FLY_SPEED = 158
MOUSE_SENSITIVITY = @.12

A dedicated function was also created to detect collisions between
the player and SUPER Power entities. This function uses simple distance
and position calculations to determine whether the player has come into
contact with the entity.

def check collision(player, item):
dx = player.x - item.x
dy = player.y - item.y
distance = (dx * dx + dy * dy) ** 0.5

return distance < (player.radius + item.radius)

General Game Mechanics

The overall functioning of the game is based on a system of
successive rounds. When a player starts a game, several parameters
are initialized:

- The role of each player (mouse or hunter)
- The round duration
- The initial scores

Each round takes place over a limited amount of time. During this
period, the main objective is to survive as long as possible when playing
as the mouse. At the end of the round, the player who held this role for
the longest time earns the point.

Future Improvements

In the long term, several improvements could be made to the game:

- Adding new SUPER Powers (invisibility, slowing down the
opponent, teleportation)

- Improving artificial intelligence

- Finer balancing of power coefficients and durations

Round and Time Management

The logical core of the game relies on rigorous round management.
The demarrer_round function is called at the start of the game and at
each transition between rounds. Each time it is called, the current round
number is incremented, the remaining time is reset based on the
predefined round duration, and the time accumulator is set back to zero.

- demarrer round(self):
elf.round actuel += 1

elf.temps restant = self.duree round s
elf. accumulateur temps = 8.8

Role Assignment

An important aspect of RTW’s mechanics is role alternation. During
the first round, player 1 plays as the mouse while player 2 plays as the
cat. In the second round, these roles are reversed. This logic is directly
integrated into the round-start function, preventing any ambiguity during
gameplay.

if self.round actuel == 1:

elf.souris = self.joueurl
elf.chat = self.joueur?
elf. PDUﬂd actupl == 2:

Game Loop and Real-Time Management

The tick function represents the game’s logical loop. It is called
repeatedly with a constant time step (dt, for example 0.016 seconds,
which corresponds to approximately 60 frames per second). This
approach is commonly used in video game development to synchronize
game logic with real time.

Milan PUIJALON — Creative Director

Objectives
There are 3 main objectives:

- Create a high quality soudtrack that reflects the spririt and
atmosphere of the game.

- Create characters that fit well into the game’s universe and can be
implemented in a parkour and chase game.

- Create this universe with a convincing map that connects to the
gameplay.

More specifically:

- The soundtrack must convey a cyberpunk universe—a chaotic,
futuristic city where anarchy reigns and everything is becoming
robotic, but without forgetting a certain sense of sadness about the
decay of the human condition and its amorality.

To highlight these two dominant aspects, the soundtrack should
include both calm, detached music and more aggressive, dynamic
music.

- The characters must be futuristic and semi-robotic to fit into the
cyberpunk universe. They must also connect to the gameplay by
representing the game of tag.

- The map must convey a convincing cyberpunk universe while
being functional for parkour and chase gameplay. Players must be
able to interact with environmental elements and use them to their
advantage.

Planning

How to achieve these different objectives in terms of time and technique?

. Music

Since | was young, | have played various instruments, especially
drums. So, | already have some musical experience. Additionally, for a
few years, | have been composing music using my computer and have
already released an album on streaming platforms under the name stylo
bleu.

| plan to continue creating music continuously and integrating it into
the video game, but this time with time, style, and spatial constraints in
the creation process.

. Characters

| have no past experience in creating 3D models. So, it is necessary to
start by learning how to use quality software for 3D model creation, while
experimenting on my own and trying to create models from scratch. Also,
| need to think about the artistic direction for the characters.

. Map

Knowing how to use 3D modeling software is also necessary for the
map. Additionally, | need to start thinking about the layout of the city so
that it is functional for parkour while remaining immersive. However,
since creating a map takes time, | will start by thinking about the
atmosphere | want to give it, but prioritize the characters and learning the
software.

Progress

. Music

When | started working on the project, | focused on music creation
because it was the only area where | had experience.

But this time, | had constraints to ensure my creations aligned with the
game's artistic direction, as well as spatial and time constraints.

The artistic direction decided with the group is a cyberpunk aesthetic. To
fit this aesthetic, | decided to create music primarily in these two genres:

1. Electronic music, for its futuristic and technological feel, as well as
its dynamic side that can emphasize the tension during chases
between the hunter and the prey.

2. Chill-hop, a style of instrumental hip-hop that is relatively calm,
reflecting the melancholy of the modern world in which the
characters evolve.

For music creation, | primarily use Studio One, a DAW with very
interesting features when you know how to use it properly. However, it
requires some investment to master, which is why, alongside creation, |
also watch tutorials or research how the DAW works.

| compose mainly using a MIDI master keyboard, which allows me to
send information to my computer and use a wide variety of sounds
without necessarily needing to record acoustic instruments. This is very
useful when you don't have space for physical instruments at home.

Screenshot of Studio One:

Stucio One - posti2)

Welcome to Analog Lab

BROWSE SOUNDS BY TYPE

T

'S

> 7 3 7
Brigniness Time

. Characters

Before starting to create characters, | needed quality software for 3D
modeling. | chose Blender and started watching tutorials online and
learning how it works. But | quickly realized that Blender is very difficult to
get started with: the controls are not intuitive, there are many possible
operations on different shapes, and many shortcuts to know to create
efficiently. | soon felt lost about how Blender works and forgot the
commands and shortcuts | had learned because | had never practiced
them. So, | decided to start creating simple shapes and trying to perform
operations on them while learning how Blender works in parallel, aiming
to better retain the information | was learning. After some time, | started
creating characters by combining basic shapes.

| started by taking spheres and stretching them to give them the shape |
wanted. Then, | tilted and moved these spheres to combine them. The
result gave me a reference body that provides an idea of the future
appearance of the characters once completed.

Given the game's concept—a tag game or "jeu du chat et de la souris"
(cat and mouse game)—two distinct and easily recognizable characters
were needed so that players could tell at a glance which is the hunter
and which is the prey.

One of the characters had to be a mouse (the prey), and the other a cat
(the hunter).

Here are images of these two 3D models:

The mouse:
A File Edit F v w He Layout
+9+ 'm ObjectMode v View Select Add Object

Orientation: 5, Default v Drag: Select Box v

User Perspective
(1) Collection | Cylinder.001

Render Window Help Layout

M Object Mode v View Select Add Object

Orientation: 3., Default v Drag: Select Box v

User Perspective
(1) Collection | Cone.001

1z, Global

Iz, Global v

. Map

Given the difficulty of using and learning Blender, | haven’t made
progress on the map yet. I've focused more on manipulating shapes to
create characters. However, I’'m starting to think about the map layout.
For example, | plan to create buildings of varying sizes and many
horizontal or vertical obstacles that would need to be avoided or used to
gain an advantage.

Gregory-Lucas CLEMENT — Team Coordinator

CONCLUSION

In this first part of the project, everyone tried to learn as much as
we could to build solid foundations for the next steps. Even if there were
some incidents, we kept going and tried to do our best. We made a table
to represent our progress and our objectives for the next steps.

Tasks Soutenance 1 | Soutenance 2 | Soutenance 3
Movements 15 % 50% 100 %
Menus 40 % 60 % 100 %
Multiplayer 80 % 70 % 100 %
Sounds 40 % 65 % 100 %
Map & 3D 15 % 60 % 100 %
Website 33 % 75 % 100 %
Al 0 % 50 % 100 %
GameMode & 20 % 60 % 100 %

HUD

Our progress has been below our expectations for the Movements,
the 3D, the Al, and the GameMode & HUD. On the other hand, our
progress has been higher than our expectations for the Multiplayer and
the Sounds. We were a little bit naive at first. Thus, we are going to focus
a lot on Al, movements, and 3D, as well as on progressing in all the

tasks.
BIBLIOGRAPHY

https://docs.panda3d.org/1.10/python/index

https://www.w3schools.com/python/

https://www.youtube.com/

https://github.com/

https://stackoverflow.com/questions

https://www.youtube.com/watch?v= 5Js5pbvFSw

https://www.youtube.com/watch?v=1FGWgaCyE8E&list=PLuine2he2FmOY 1|

LTDc1OR9vHgIMBw4 W

https://docs.panda3d.org/1.10/python/index
https://www.w3schools.com/python/
https://www.youtube.com/
https://github.com/
https://stackoverflow.com/questions
https://www.youtube.com/watch?v=_5Js5pbvFSw
https://www.youtube.com/watch?v=1FGWgaCyE8E&list=PLuine2he2FmOY1ILTDc1OR9vHgIMBw4_W
https://www.youtube.com/watch?v=1FGWgaCyE8E&list=PLuine2he2FmOY1ILTDc1OR9vHgIMBw4_W

	SUMMARY
	INTRODUCTION
	ORGANIZATION & METHODOLOGY
	INDIVIDUALS CONTRIBUTIONS
	Rayan BENNJAKHOUKH – Group Leader
	Objectives
	Project Organization and Management
	Setting Up Work Rituals
	Strategic Task Distribution
	Managing Unexpected Situations

	Menu Development
	Learning and Technical Choices
	Learning Method
	Concrete Achievements and Technical Details
	Understanding the Class System and Imports
	The Base Menu
	Menu Navigation - Hide vs Destroy
	The In-Game Pause Menu
	Key Moment

	Common Tasks and Documentation
	Conclusion

	Achille SALVAN – Technical Lead
	Objectives
	Choice of P2P
	Movements
	Input Management
	Camera Management
	View System
	Movement Physics

	Multiplayer
	A Hybrid Architecture
	Connecting Players
	Packet Exchange

	Website
	Choice of Technologies
	Site Content

	Conclusion

	Mehdi HADJAB – Game Manager
	Introduction
	The SUPER Powers
	Technical Implementation

	General Game Mechanics
	Future Improvements
	Round and Time Management
	Role Assignment
	Game Loop and Real-Time Management

	Milan PUIJALON – Creative Director
	Planning
	Progress

	Gregory-Lucas CLEMENT – Team Coordinator

	CONCLUSION

